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Large Amplitude Linear Vibrations of Tensioned Strings
John Dimeff, James W, lLane, and Murray S. Gardner
National Aeronautics and Space Administration

Ames Research Center, Moffett Field, California

ABSTRACT

The transverse motion of a tensioned string driven
parametrically by a moving end support 1s examined both

analytically and experimentally. The conditions reguired

!
large amplitude range at constant frequency are developed

and shown to be physically realizable.
INTRODUCTION

The transverse vibrations of a tensioned string mounted between two
rigid end supports 1s a classic problem when the amplitude of vibration
is small and the initial tension in the string is unaltered by its motilon.

Several analyses have been made of the nonlinear regime encountered when,
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the motion of the tensioned string is large enough to influ

. %
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There has peen recent interest in the applicavion of the
vibrating string 1o varicus ncasurement and sensing problems, for example,
measuring lineal motilons along or perpendicular to the rest axis of the
string and measuring angular motion about its rest axis. If small
amplitudes are used in such applications, linear equations describe the
string motion but complex measuring apparatus must be used. Large ampli-
tude nonlineaf vibration, on the other hand, is characterized by complex
drive requirements (imposed by stability considerations) and inherent
losses in accuracy and reliability associlated with these added complexities.
Intuitively it appears possible to obtain large amplitudes with essen-
tially no change in natural frequency with amplitude i the supports are
moved in a manner to offset increased tension due to deflection, With
this in mind we will investigatc the large amplitude vibration of a string

under approximately constantgtension for the purpose of demonstrating the
P

feasibility of its utilization as a linear element in sensing systems.
MOTION OF A STRING UND’R APPROXIMATELY CONSTANT TENSION

Let us consider a string uader a tension T = Ty + AT(s,t) where
OT(s,t)<< T, and let us allow it to vibrate so that it has a constant
average tension equal to T,. The relative significance of this choice
of operation will be apparent later. Since this condition might be
achieved, for example, by approoriate control of the axial motion of one
of the end supports, let us initially assume that the string is mounted
(as shown in Fig. 1) between two rigid end supports, A and B, with A
taken as the fixed reference for-bur coordinate system, and B allowed
to have motioﬁ along the rest axis of the string. Additional assumptions

will be those normally invoked:
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a) Tnhe propagation time alonz the string is small compared to the
period of transverse vibration.

b) The forces introduced ky the bending of the string arc negligible.

c¢) The motion of the strirg is confined to the x-y plane.

d) The damping forces are negligible.

The partial differential ecuations describing the motion of the string

are.

txj
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tions on the tension distributec along the string. In the classical solu-
tion of Eq. (2) ds is assumed equal to ax. For large deflections,
however, this assumption is wwerranted® and will not be wmade at this time.
Considering only the steady-state soluticn for string motion in the s-y

plane and in the fundamental mode, the well-known solution for Eq. (2) is

y(s,t) = Yo sin(xs/sg) sinwgt (3)

where wgy 1s the low amplitude natural frequency of the string.

One important assumption mede in reaching this solution was that the
tension remains constant. This assumption implies that the motion of the
support block B would be so constrained as to hold the instantaneous
value of the tension, measured &long the string, equal to the tension, Tj.
Whether or not this condition cen be achieved is the next question to examine.

Let us note first that from purely geometrical considerations

(ax)? = (as)2[1 - (3y/3s)3]



The partiasl deriveative of y with respect to s can be obtained from

Eq. (3) and inserted in the above equation to provide
(ax)2 = (ds)3[1 - (n%yo3/802) sin®wyt cosZ(ns/so)] (&)

Taking the square root of both sides of thils equation and making the series
approximation for the square root of the quantity in brackets, one obtains

the approximate expression
ax = [1 - (52y02/2502) sinfw t cos®(ns/sp)lds
and integrating this equation gives
x =5 - (B2 /lsc®)s sinfugt - (ny, 2/8sy) sin(2ns/sg) sinfugt (5)
Evaluating Eq. (5) at the point s = sy, we obtain the expression
Xp = 8¢ - (n®y2/bs,) sinfugt (6)

which describes the motion of the end block required to meintain a constant
tension,

The solution of the partial differential equation in y has produced
frequency and shape equations for the motion of the string in the s-y
plene,® and has provided the equetion of motion of the end support required
to maintain a constant average tension. It has still required the assump-
tion that tension is uniform along the string. In examining the validity
of this assumption, let us assume that x accelerations are produced by
a combination of two forces: first, the x-directed force resulting
from the constant tension component and the curvature of the string;
second, the additional x-directed force (not accounted for by the com-

ponent introduced by the curvature end the initial tension)required fo
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satisfy the shape and frequency equations already derived. This latter
component will result in a time varying tension distribution along the
string. If we derive the expression describing this distribution as a
function of the deflection, Yo» &nd compare the magnitude of the tension
variations with the magnitude of the initial tension, this comparison will
éllow us to judge the validity of the assumption that forces introduced by
X accelerations are negligible and thereby to determine the deflection
reglon for which this assumption is valid.

The forces acting in the x direction are described by Eq. (1)

Px . D [mdx
m 32 ds = 35 <# 8s> ds
where

T = Ty + AT(s,t)

If we solve the above equation for T using the expression for x given

by Eq. (5), we obtain

2
T Vo < 2rs 2n3s2 >
= = K(t) + 1+ cos =— - cos2w.t - cos2w.t )
To ( ) SOE so (o] 302 (o] (7

Since the initial formulation requires that the instantaneous velue of the

tension averaged over the length of the string be constant and equal to

Iy, we may write
S0
L [T Eas -1
So Jg o]

Substituting Eq. (7) for T/To, integrating, and solving for the constant

of integration, we obtain

ﬁ%\, XERG) Xerr <ERO
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J= N o
. it -f’“ / e = ) N
K(C) = 1 + = Z \cos2w0t + = c0os2w.v - \
8sg N 3 v /
and, hence,
2~ 2 ~ o o N
=y g 2 , i \
I .1+ ———g—-<cos 77~—a21— cos2ugt - 2;—;— coslugt | (8)
lI'O 850 =0 3 50% /

From this equation we obtain & meximum value for tension variation of

é@> T Yo /1 - §§E-+ 2ﬂ2\ = 17.5 Yo_ at wot = =

max \ > J 557 © 2

Thus, when the average tension of the string is maintained instantaneocusly
equal to TO7 and an instantanecus maximum local tension variation of
(AT/To) o = 005 is tolereble, the corresponding range of y, for which
Eq. (3) is valid is y,/sc < 0.055.

For purposes of this peper, we ave primarily concerned with the char-
acteristics of a string driven by the motion of an end support so as to main-
tain its average tension constant. It 1s interesting tc note, however, that
the approach used above can be spplied to the string vibrating between fixed
end supports to yield a solution which should apply over a larger range of

vibration amplitudes than those derived by the classical analysis.8
MOTION OF THE STRING FOR sin®wt END DRIVE

The analysis presented above has not regquired the basic assumption
that ds = dx nor the implied assumption that an element of the string
mist remain in the vertical interval between x and x + Ax, but it has
been limited to w = wg. A more complete understanding of the string
motion requires examination of its motion for w % wo and its stability.

Previous analyses of string motion have been made in the x-y coor-
dinate system. In order that the results of our analysis of motion at fre-

quencies other than wg and our analysis of stability can be more readily
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compared with other analyseé, it is convenient at this point to treat these
Problems in the more conventionai coordinates, making the small amplitude
approximations and assuming that ignoring the effect of the moving bound-
ary does not significantly affect the results. The resulting equation for
the deflectioh of the string for the constant tension case is then

yv(x,t) = yo sin %% sinwyt

It is clear that, if the values of yo/sg and s are sufficiently restricted,
the displacements of an element of the string obtained from both the s coor-
dinate analysis and the x coordinate analysis are essentially equal. Being
cognizant of this comparison for the special case where w = wy we will exam-

ine in a conventional way the motion of a vibrating string driven by an axial

but is allowed to vary with time, and w 1s allowed to assume values other
than wy. The frequency response and stability criteria resulting from this
analysis will be checked experimentally.

The motion of a string under initial tension, Ty, supporied between one
stationary end support and a second end support moving with an amplitude
xq' cos 2wt (Fig. 1) has been considered by Quick.™ The equation of motion

for such a string is

=) Fax ! o ~2
m %;% = [TO + Sd cos2wt +-——-JF L 8%) dx} g g (9)
[0} X

where m 1is the mass per unit length, E 1is Young's modulus, and a 1is the
cross-sectional area of the string. The derivation of this equation requires
that the amplitude of vibration ve sufficiently small that the sine and tan-
gent of the deflection angle can be assumed equal. The terms in brackets in
the above equation represent the initial tension, the tension due to driver

motion, and the tension due to change in arc length, respectively. TFor the

term involving the arc length, the approximation has been made that



@@

The propagation time along the string is assumed to be small compared to the
period of transverse vibration, and the forces introduced by the bending of
the stfing are assumed negligible. Only planar motion of the string is
considered.

The motion of a string driven by the axial motion of an end support
moving with an amplitude -Xg sinéwt can be analyzed in the same manner.

The equation of motion for this condition is:

2
2y Baxg . » Ea [0 1 (dy Py
-5 = - i = = == —_ 10
m .- To 5 sin®wt + % J, 2 \ox dx 52 (10)
The trigonometric identity sin®wt = % - % cos2wt can be used to write

Bg. (10) as:

2
32y Eaxy\ Eaxy Ea /‘So 13y Fy
m -—;—2— = TO - -é?(;— + gsq- cos2wt + %o Js 5 Sx d.X]' B—P (ll)

This equation is identical in form to Eq. (9) and has the same boundary con-
ditions, y(0,t) = 0, y(so,t) = 0. It can be solved by the technique of

separation of variables as outlined below.

If y(x,t) = F(x) G(t), the resulting ordinary differential equation
for F(x) is
2
a=F(x)
=+ UF(x) = 0 (12)

The solution to this equation is

F(x) = An sinlpx + By coslyx (13)

In order td satisfy the boundary conditions it is necessary that Bp = O and

Uy, = (nn/sy) where n is o positive integer. Considering the steady-state

f xsnoi { XERG:
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solution for the fundamental mode, Eq. (13) becomes
F(x) = A, sin(nx/sg) (1%)

The time-dependent equation is

2 2.2 2.3
a2c(t 2< x4 > Lo xg } 28w "G (t)
+ W 1l - + - cos2wat (G(T) + =0 1
L) uo(2 - i) + ganes eosage () + A (15)

where ALO/SO is the initial strain and

A particular solution for this equation can be obtained if an approximate
solution of the‘form G(t) = K, sinwt + K3 sin3wt is assumed. When this
solution is substituted into Eg. (15), the resulting expressicn consists
of terms in sin(2n+l)wt;n = 0, 1, 2, . . . . If the coefficients of the
sinwt and sin3wt terms are equated to zerc, the following relationships

are obtained

]
|
Il
-~
|
N
Y
)
il

) (16)

]

Ve  Kggp { weZ - w2 }
yi o K2 307w +wo® ~wo® (xa/ALlo) ]

Thus the steady-state solution to Eq. (11) is reasonably well approximated

by

y(x,t) = (y, sinwt + y, sin3wt) sin %5 (17)
o



- 10 -

It may be noted that the 3wt frequency term disappears if w = wg
regardless of the drive amplitude. This condition also results in the

tension belng constant at the value T,.
STABILITY

In order to determine whether the motion of the string described by
Eq. (15) is stable, it is necessary to examine the effect of applying a
perturbation to the partiéular solution. The effect of the perturbation
will die out if the solution is stable. To be more explicit, we will
substitute the function C(t) = Gp(t) + a{t) into Eq. (15) and show
that the resulting equation is idontical in form with the Mathieu equa-
tion which nas a well-establishied criterion for stability. Making this

substitution for G(t) in Eq. (15) and neglecting terms in o and o3

one obtains the resulting equation

2 r : 30 202a . 2627
d%a | wWo© | X3\ 5 3 S w8y Up
— = 1l - = jw® + ——uF cos2wt + =——————{ a = 0 18
at®  w?® | 2Ly 2hlig 4soblo (18)
Since Kg K K3
6o Klz sin®wt
iY
Eq. (18) vecomes
2 o g 2., 2 B
o r< d 3 13N 2 ! 317VTN 2 | :
—_— t — 1 - + = lws + - = we cos2wt { @ = O 1
w2 2L 2, * 8 5aly) 2Mlg 8 Soblg | (19)
The Mathieu equation written in the: standard form is
deZ ) 7z 2
— + (w®p + 16w3q cos2wt)z = O (20)

a2
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Tt is evident that this equation is identical to Eq. (19) if

= woz 1l - *d 3 3— “—2_}’_13.
P=z 2AL, = 8 solly
1 wo® /xg 3 77yy

=38 2 \&Lo ~ 8 sollo

The oscillatory motion described by this equation is stable if any of the

conditions p > (148q). p < (1-8g) for q >0 or p < (1+8q), p > (1-8q)

for q < O are satisfied. When these criterie are applied tb Eq. (19),'

stable oscillations can be obtained if elther

w2
2

X3 u(
A-L_o>§\l—_ for g > O

W~
(o]

or

X3
ZE;'> 0 for ¢ <0

Figure 2 is a graphic representation of the stability criteria for the vibrat- <§E§E 2
ing string driven with a -xg sin®wt forcing function. An examination of
Fig. 2 shows that the oscillations are steble for any amplitude.
Equation (15) can also be examined to establish the conditions necessary .
to start oscillations by means of a sinfwt end drive. For very small

amplitudes, the cubic term can be neglected and Eg. (15) becomes

a2a(t) | Woo X3\ 2, % =
2 + = [ 1 - 2AL€>°’ * oatg ¢ cos2uwt |G(t) = O (21)

We are now interested in instebility; that is, conditions that meke small

oscillations grow. From Eq. (20), the criterion for instability is
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1 -8g<p<1+8g. Expressing this condition in the parameters of Eq. (21)

gives the relationship

2 X 2
o -G <m (- 5)
which must be satisfied to start oscillations. This criterion is shown in
Fig. 2.

It can be concluded from an examination of the stability criteria that
the string parametrically driven by & sin®wt end motion will vibrate with
stability at large amplitudes over a wide frequency spectrum. By contrast,
large smplitude motion of strings driven by transverse forcing functions
are characterized by unstable behavior, such as the "jump phenomenon”
(sudden shifts from one mode of vibration to another at a given freguency).

For purposes of comparison it is interesting to consider the equations
as obtained by Quick® for the displacement of a string driven by an end

motion of the form Xg' cos2wt. The displacement is
v(x,t) = [(y1 sinwt + ya sin3wt)] sin(xx/sg) (22)
where
850 2 N 1
2 ' W
= —— Ix3' + 20Lgl —= - 1
Vit 32 [ a °<‘*’o )J
B (23)

Vs L(6/we?- 1)) - (xg/oLo)
Y1 3[(xgq'/ALo) - T(w?/we?) - l])

The stability criteria which must be satisfied are

T

RERO I *‘ IEERD -
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The initial start conditions are

The condition necessary for lineari;ing the eguation of motion and maintain-
ing constant tension (i.e., no dynamic component of tension, but tension
will not be equal to To) for this forcing function as obtained from Eg. (23)
is

! =

==z -1
o Wo

e
;

&

This condition indicates that, unlike the case of the sin®wt drive, the

string cannot be operated linearly at its low-amplitude natural Irequency, wg,
but must be operated at a frequency governed by the amplitude. Despite the cou-
oling of frequency and amplitucde, it is important to note that the response of
an instrument using a string driven either as suggested by Quick® or as sug-
gested by this paper can be linearized by the use of appropriate electronic sig-
nal-conditioners. When the string is driven by aA axial support motion

of the form xd'c052wt, however, the input command signal must control

both a change of driver amplitude in accordance with the expression




- 14 -

Xgq' = ﬂaylz/Sso and a simultaneous change in frequency in accordance with
the expression w? = woz[(deALo) + 1]. In the case of the string driven
as suggested by this paper, the input must control the driver amplitude
in accordance with the expression xg = n®y,®/lks, while the frequency
can be allowed to remain fixed at w,, independent of drive amplitude.
The simplification of the system thus achieved is considerable.

It 1s of further interest to compare different methods of driving
the string on the basis of the time-averaged strain induced in the string
as a function of vibration amplitude. Without deriving the exact fre-
quency relationshipsinvolved, it is apparent that, since the change in
strain is related to the change in frequency, it provides a measure of
the system nonlinearity. For the drive method suggested by this paper
(the sinewot drive) the strain is forced to remain zero. For a fixed
end support system, where the string is driven transversely, the change
in strain is given by &x/s, = 7%yo°/4sc®. For linear operation with
the cos2wt end drive, the change in strain is given by

A)(/SO = ﬁ2y02/8502.

EXPERTMENTAL PROCEDURE

The experimental apparatus used to investigate the motion of the string
is shown in Fig. 3. An electromagnet having an AC coil and a DC coil was ig. 3
mounted at one end of a rigid frame. The moving end support of the string

was attached to the coil form which was attached to the frame by two sets

»




of flexures. The string amplitude, y,, was measured both optically and

by means of a displacement transducer which measured the capacitance

change between the moving string and a fixed plate. The motion of the
moving end support was determined from the capacitance change between a
fixed plate and a plate attached to the moving end support. The principal
resonance of the electromegnetic driver was approximately 5 cps. Secondary
resonances of the support structure were observed at other frequencies.

Data were not taken at these frequencies in order to avoid spurious effects
of uncontrolled forcing functions. The AC coil was driven by an audio
oscillator and power amplifier while the current in the DC coil was adjusted

in the following manner: The spacing between the plate was measured with

I, cos2wt +to the AC coil, and the amplitude of the corresponding dynamic
motion, A cos2wt, was measured. A current was then applied to the DC coil
and adjusted so that the rest position of the end support was displaced
inwardly an amount A. The net inward motion of the end support was then

A - A cos2wt=xg sin®wt.
RESULTS

The amplitudes which could be examined experimentally were restricted
by end driver resonances and power limitations to values of yo/so less
than 0.0175 (corresponding to peak-to-peak displacements less than 1.k cm),
so that the full range of displacement amplitudes considered in the theory
could not be explored. The results of tests performed with a 0.0076 cm
diameter nickel steel wire 40O cm lng are presented in Figs. L4 and 5. Figsé 4

Figure L4 shows Yy, the maximum transverse amplitude, plotted as a func-

tion of w/wo for various values of xg where the end driver motion is
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-xg sin®wt. The theoretical valﬁes of y, obtained from Eq. (16) are
represented by the solid curves. Figure 5 is a similar plot for the same
wire with a driver motion xg'cos2wt. An approximate value for the low-
amplitude natural frequency, wg, wes obtained from the initial start
behavior (i.e., wy, was taken to be that frequency at which vibration could
be most easily initiated). A better value for w, was then determined by
keeping frequency constant and vibrating the wire at several different
amplitudes. Equation (18) was then solved for wgy, and this value was

used for all other calculations related to this initial tension. Figures 2
and 6 show the regions where vibrations can be initiated and the regions in

which steble oscillations exist for driver motions of sin®wt and cos2uwt,

1

™ [ PR

respectively. The experimental points for g

'start up" and
also plotted on these figures.

The experimental results show that the string motion described by the
analysis correlates with its measured motion both in a vacuum and in the
presence of air damping.9 For frequencies other than w, the string
motions obtained by the sinzwt drive and the cos2wt drive are essentially
equivalent. It can be seen from the dotted line of Fig. L, however, that
w = Wy is precisely the condition required to linearize the equations of

motion of the string forced by a sin®wt end drive. By contrast, the

conditions required to linearize the equation of motion of the string forced

by a cos2wt end drive (see dotted line of Fig. 5) involve correlating small

changes in amplitude with large changes in frequency. Operation of either
system at conditions other than those shown by the dotted line would»involve
large cyclic changes in tension, limited operating lifetime due to fatigue
caused by those changes, and would require a significantly more complex

control system to stabilize the nonlinear behavior of the string.

ig. 6
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Clearly then,the proposed sin®wt end drive offers significant advan-

tages.

CONCLUDING REMARKS

The equation of motion of & vibrating string and the form of the para-
metric drive required to obtain essentially constant tension and therefore
a linear equation have been derived. By the use of s-y coordinates, an
analysis of the motion has been made, which is not entirely rigorous but
has enabled us to judge the amplitude range for which the constant tension
assumption is valid; and obtain a first approximation of the function which
describes the small deviation of tension from the assumed constant value.

1.

10ds of physically controliing the tension have been shown to

Several met
produce essentially equivalent results. Results of a less precise (x,t)
analysis (used because of their canonical form) then allowed us to study
stability criteria. Experimental results over moderate amplitude ranges
show good correlation with the theory, and further indicate that the effect
of air damping (ignored in the derivation of the equations of motion of the

string) is negligible. The analysis is shown to apply, therefore, to large

amplitude stable vibrations with damping.

BEAcH
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FOOTNOTES

W. H. Quick and G. A. Barnes, EM-262-482, ASD-TDR-62-898.

ZN. W. Mclachlan, Theory of Vibrations (Dover, New York, 1951).

3D. W. Oplinger, J. Acoust. Soc. Am. 32, 12 (1960).

“G. F. Carrier, Quart. Appl. Math. 3, 157-165 (1945).

5Using this assumption to derive the differential equation generally
involves summing the y-directed forces acting on a particular string
element and assuming implicitly that the element whose motion is thus
described remains confined between x and x + dx. It is clear, however,
that these conditions are not physically valid. To solve the problem more
rigorously, one must develop the equations that describe the composite
motion of an element moving in an arc; or, alternatively, derive the equa-
tions which describe the motion of the varying element of the string con-
tained between x and x + dx. Eliminating this assumption introduces
mathematical complexities which may be avoided if the transverse deflection,
y, is analyzed as a function of (s) and (t) instead of the normal variables
(x) and (t). Further, the use of the s-y coordinate system eliminates
the need for working with a boundary value problem where one of the ﬁoundaries
(the moving end support)is in motion in the x direction. After the partial
differential equation relating y, s, and t is solved, y(x,t) can be defived.

éFor the sake of completeness, it would now be desirable to use Egs. (3)
and (4) to derive y(x,t), describing the motion in & more familiar frame of
reference. Integrating Eq. (4)to determine s = f(x,t), however, involves the
inverse of the function E[ (ns/s0)-(n/2), (ny/so) sinwgt] where E .ié an
elliptic integral of the second k{nd. It is apparent, then, that y(x,t)

cannot be expressed in terms of the simple algebraic, circuler or hyperbolic
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functions of elementary mathematics. An approximate solution for y(x,t)

can be obtained from Eq. (5). This solution is

3y 2
x 73y o2x X . 2 < sin 2nx/s§>]
X,t) = sinwat sin =1 + ———— cot — sin“wpt {1 + —————
Y( b ) - yO (o] SO|: 503 So o] EKX/SO

"This condition has the desired characteristic that the length of the
string is then unchanging regardless of its modulus of elasticity. However,
it is worthwhile to consider several other operating conditions which still
meet the condition that AT << T, and examine their associated tension
deviations. While the latter cases do not hold the average tension quite
constant and therefore allow some overall stretching or relaxation of the
string, they may be easier to implement for some applications. A few of
the many possible alternative conditions are outlined below:

When T is instantaneously equal to T, at s =0

12y .2 2.2
I =1+ yg <Fos ans | 22_%_ cos2upt - %)
To 8so So S0
and
- 2
%;) ~ o Yo
O/ max 80°

When a constant force is applied by the string on the driven support, that is,

(3% /3s) = Ty

7 2.2
é& =1+ yg (Fos s _ & Z cos2uat + 212 cos2wet - 2 cos2wgt + %)
o] 8 So s
S0 o
and
2
<—A—T = 24 3_@_2_
To/max 50
XERO /’@ Py

cory | “ERO
t REE
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When T is instantaneously maintained equal to T, at s = So

nzy 2 2.2
I _ 4. Z <} - cos ans _ 2n Z cos2ugt + 2n2 coszwo€>
To 8so 8o 50 :
and
: 2
N
-T—T> x 24 }%
Q, max So

In the discussion above one support has been fixed while the other has
been constrained to fqllow the x component of the string motion., An
alternative physical arrangement might allow no x motion at the center
while constraining both supports to follow the x motion of the string.‘
When the tension averaged along the length of the string is instantaneously

equ.al to TO

72y 2 2 2,2
%L =1 - —-zg—-<}os 2rs + 2 cos2wgt - en s cosawo€>
o 8so Bo 3 80

and
AT ¥o©
To) . =9 5
O/max Sp

This is the best operating condition of those cited, since it provides
the greatest range of linear operation, However, a number of other possible
choices which might be physically more attractive for some experiments

produce essentially equivalent results,

. -

o min



8For .free vibrations of thf string mounted between fixed end supports

éf[ 5_ To [1 £ __£§L§%]§¥} where Tg <1

If it is initially assumed that Am(s t) .can be neglected and we use a new
independent variable (s/s) to identify a particular element of the string g
(where the _paraneter s is the instantaneous string length) then

y(s,t) = Y(s/s)G(t) and the solution to the above equation in the fundamental

mode is
: N .-Qf&s.'. . Tt o
y(s,t)_; yo:sin.ﬁg‘sinwot z.ahere Wo = ¥ ’;r

where X, 1s the- initial string length Now y(x,t) can be obtained from .

arc length considerations and is given by

y(x,t) = Yo (i + — 2yo 'cosg ﬁz‘sin2w0t> sin Ez-sinwot
B S %o

From these equations and the ehnation'of'motion in the x-direction, we obtain

the expression . - I .

“22

WX oALo

yg -Ccos 2fs_cos&not +
8 .. B T

%£r='1'+ sinZwgt

where x——-° i8 the initisl string stra:in. This approach is the first Step in
o]
an iterative process whlch_should yield more precise frequency and displacement

‘equations applicable over 1arge ranges of amplitude. - '
9In analyzing the behavior of tensioned strings we were concerned with

the effect of damping on string motion, but it was not considered in the equa- '

tions. The equations which result from’ considering & damping term are consider-

ably more difficult to solVe and their solution would have involved less valid

S



R
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PR L ’, .

approximations than those which have been used in the analyses presented above.
Fortunately,lone of the most siénificant results of our experimental investiga-
tions was to demonstrate that the planar motion of the string is relatively
unaltered by eir demping. The.string was driven at atmospheric pressure and’
at a pressure-of 1072 torr. These results are presented in Figs. h and 5 and
indicate that no significant deviations were observed from the response pre-:

dicted from Eqs. (16) and (23), which were derived without considering the -

effect of damping.
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